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I study the problem of a decision maker choosing a policy which allocates treatment to a

heterogeneous population on the basis of experimental data that includes only a subset of

possible treatment values. The effects of new treatments are partially identified by shape

restrictions on treatment response. Policies are compared according to the minimax regret

criterion, and I show that the empirical analog of the population decision problem has a

tractable linear- and integer-programming formulation. I prove the maximum regret of the

estimated policy converges to the lowest possible maximum regret at a rate which is the

maximum of N−1/2 and the rate at which conditional average treatment effects are estimated

in the experimental data. In an application to designing targeted subsidies for electrical grid

connections in rural Kenya, I find that nearly the entire population should be given a treatment

not implemented in the experiment, reducing maximum regret by over 60% compared to the

policy that restricts to the treatments implemented in the experiment.
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1 Introduction

Heterogeneous treatment effects are often estimated with a decision problem in mind— should a particular

individual be treated? This question has fostered much research in econometrics, statistics, and machine

learning. However, relatively less attention has been given to another important margin of the decision—

should the treatment itself be adjusted? Whether the treatment is a medical treatment, subsidy, job training,

or audit probability, decision makers can usually entertain changing the treatment value that was observed in

the data. Even experiments with multivalued treatments may not implement an exhaustive list of treatment

values. This is especially true in the social sciences, where testing multiple interventions can be costly, and

in the medical sciences, where specific treatment doses are often tested in clinical trials. In this paper I

propose a method for allocating treatment to a population when the treatment values themselves can be

adjusted to values never before seen in the data. I show how combining the data on existing treatments

with economically motivated shape restrictions can be used to design policies that outperform those possible

when only previously implemented treatments are considered.

I first formulate a decision problem in which the decision maker observes experimental data on some

treatment values and seeks to construct a mapping, or policy, from the space of covariates to the space

of treatments in order to maximize some objective function. I assume all experimentation is done before

the policy is constructed. This setting, which is common in econometrics, is often referred to as treatment

choice or offline policy learning. Examples include Athey and Wager (2021) Bhattacharya and Dupas (2012),

Kitagawa and Tetenov (2018) and other examples mentioned in the literature review thereof, Liu (2024),

Mbakop and Tabord-Meehan (2021), Qian and Murphy (2011), Sasaki and Ura (2024), Zhang, Tsiatis, et al.

(2012), and Zhao et al. (2012). A distinctive feature of this paper as opposed to most policy learning problems

is that the set of treatments that the decision maker can consider may be a strict superset of the support

of the treatment random variable observed in the data. This extends policy learning to practically relevant

situations in which constraints in the design and implementation of experiments or simply differences in the

objectives of the experimenter versus decision maker result in only a few treatment values being piloted in

the experiment, while the decision maker may want to consider many more.

Despite the lack of data on the impacts of these never-before-implemented treatments, I show how to

bound the response to new treatments using simple, economically interpretable restrictions on the shape of

treatment response. For example, a financial incentive may be assumed to have a positive effect, exhibit

diminishing returns, or satisfy smoothness conditions. Such shape restrictions are often exploited to partially

identify treatment effects (e.g. Manski 2009, Mogstad, Santos, and Torgovitsky 2018). The empirical analysis

of the present paper demonstrates that such bounds can be adequately informative for choosing whether and
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how to implement new treatment values. Based on these bounds, I construct a population decision problem

to choose which treatment to assign to each covariate value. I use the minimax regret criterion to evaluate

treatment choice under partial identification following Manski (2007).

As in Manski (2004), Kitagawa and Tetenov (2018) and the subsequent literature on empirical welfare

maximization methods, I propose a decision rule based on solving the empirical analog of the decision

problem as a surrogate for the infeasible population objective. The resulting empirical minimax regret

estimator is constructed by minimizing maximum regret across an estimate of the partially identified set

of treatment response functions. In this way, the resulting policy is robust to model ambiguity induced

by introducing new treatments. Despite involving nested, non-closed form optimization problems which

characterize the identified set for treatment response, I show how the optimal policy can be computed using

the same linear and integer programming tools common in the policy learning literature. The estimator is

thus computationally feasible and can be implemented by widely available software.

I show that the proposed decision rule possesses desirable regret properties. The maximum regret obtained

under the estimated policy converges to the smallest possible maximum regret that the decision maker could

have achieved in the absence of sampling uncertainty– that is, if the population identified set were observed–

uniformly across a set of data distributions. The rate at which the regret of the estimated policy converges

to its optimum depends on the estimation rate of the response to the treatments which were observed in the

data, and hence is an asymptotic rather than finite-sample convergence guarantee. In the case of discrete

covariates, or more generally parametric rates of convergence for estimated treatment effects, the rate of

convergence of maximum regret is N−1/2. Otherwise, maximum regret converges at the nonparametric rate.

I apply the method to data from Lee, Miguel, and Wolfram (2020b), in which households in rural Kenya

were offered one of four prices in 0, 15, 25, or 35 thousand shillings to connect to the electrical grid. I

consider a decision maker able to offer prices in increments of 2.5 thousand shillings based on household size

and income. This represents a much richer set of fifteen possible treatments, allowing for finer targeting of

personalized prices to optimize the cost-effectiveness of the subsidy program. To bound the takeup at these

new prices, I assume demand is downward sloping and convex. The estimated minimax regret optimal policy

assigns prices that were not implemented in the experiment to nearly the entire population. Moreover, the

maximum regret of the estimated policy is over 60% lower than the maximum regret of the best policy that

only implements the prices implemented in the experiment, illustrating that constraining the decision maker

to treatments that appear in the experimental data can result in suboptimal decisions.
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1.1 Related literature

This paper contributes to a growing literature on statistical treatment rules in econometrics beginning with

Manski (2004) and Kitagawa and Tetenov (2018), which introduced the now-common empirical welfare

maximization framework. I follow a similar strategy of constructing an empirical analog of the population

objective, but seek to minimize the worst-case regret that can occur within the identified set of treatment

response.

Forecasting the effects of treatments or policies never before observed in the data is a fundamental goal

of econometrics, especially when applied as a guide for public policy (see Heckman and Vytlacil (2007) and

Manski (2021) for a deep discussion, including a historical overview). Nonetheless, the recent literature on

policy learning and treatment choice has generally not considered the introduction of new treatments with

partially identified effects.

Previous literature has treatment choice under various forms of partial identification. Manski (2006) and

Manski (2010) consider minimax regret treatment choice when the decision maker only observes data under

the status quo policy and uses monotonicity restrictions to partially identify the effects of counterfactual

treatment intensities on welfare. The analysis is in the population, and issues of statistical estimation are not

considered. Manski (2007) considers minimax regret treatment choice when some outcome data is missing

not necessarily at random, leading to partial identification of treatment effects, and proposes an empirical

analog. Manski (2006), Manski (2010), and Manski (2007) do not consider restricted policy classes, as is

common in the statistical policy learning literature, yielding a decision problem that is separable in covariates.

These restricted policy classes are also important for the convergence properties of the estimated policy.

The paper most closely related to this one is Manski (2025), which studies the question of how to allocate

new dosage levels of a treatment given experimental evidence on a subset of possible dosage levels. Like

this paper, Manski (2025) uses shape restrictions to bound the response to new treatments, and uses the

minimax regret criterion to choose a decision rule. Unlike this paper, Manski (2025) assumes population-

level quantities are known and hence does not consider statistical properties of estimated decision rules,

nor does it consider targeting new treatments on the basis of covariates using complexity-constrained policy

classes. The two papers also use different utility functions– the present paper using a linear-in-outcome

utility function, while Manski (2025) assuming four discrete outcomes associated with different utility levels.

Finally, Manski (2025) considers fractional treatment assignment in addition to the deterministic treatment

assignment considered in this paper.

Ben-Michael et al. (2022) develops a method for learning policies from data gathered under a deterministic

policy for which strict overlap fails; Zhang, Ben-Michael, and Imai (2024) tailors this framework to the case
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where the deterministic policy is a regression discontinuity design. The introduction of new treatments is

similar to the deterministic policy setting considered here in that it is also a case where strict overlap fails.

Ben-Michael et al. (2022) and Zhang, Ben-Michael, and Imai (2024) use a maximin gain welfare criterion,

where the objective is to learn a policy that is guaranteed to weakly improve on the status quo policy. Khan,

Saveski, and Ugander (2024) studies robust policy evaluation using Lipschitz constraints when strict overlap

fails. Ben-Michael et al. (2022), Zhang, Ben-Michael, and Imai (2024), and Khan, Saveski, and Ugander

(2024) focus on partial identification through restrictions on response as a function of covariates, while this

paper focuses on shape restrictions on the response across treatment values.

Unobserved confounding can be a source of partial identification in policy choice with observational data.

Kallus and Zhou (2021) studies this setting, and use bounds on the distance between the true propensity

weights and the observed (biased) weights to partially identify the effect of policies. Their criterion is

maximum regret relative to a baseline policy such as the status quo, and like the present paper they show

that the maximum regret of the estimated policy converges to the lowest possible maximum regret. Pu

and Zhang (2021) uses an instrumental variable to partially identify treatment effects when unobserved

confounding precludes point identification, and proposes a classification-based approach with a surrogate

loss to learn the optimal policy under a maximin welfare criterion.

While unobserved confounding threatens the internal validity of the estimated policy on the experimental

population, other papers consider threats to external validity, where the experimental population is different

from the target population. Adjaho and Christensen (2023) studies this setting, using Wasserstein neigh-

borhoods to construct the identified set, and derive closed form expressions worst case welfare within these

neighborhoods. Lei, Sahoo, and Wager (2023) studies policy learning when the experimental population may

self-select into the experiment on the basis of unobserved characteristics. They consider maximin, maximin

gain, and minimax regret policies. They solve for a closed form when Π is unconstrained, and propose an

estimation method which is not a plug-in method.

D’Adamo (2023) studies policy learning with a binary treatment where the identified set is rectangular,

meaning it is constructed by taking the product of pointwise bounds on each treatment effect. In contrast,

shape restrictions on the response across treatment values generally yield nonrectangular identified sets.

This leads to difficulties when estimating the optimal policy in my setting because the bounds I identify do

not in general admit a closed form. However, the extra information provided by these shape restrictions

can lead to lower maximum regret than one would obtain using pointwise bounds. This is illustrated in the

empirical example of Section 5. D’Adamo (2023) also provides a doubly robust estimator that can improve

the convergence rate of the estimated policy under a margin condition.

Stoye (2012) gives exact finite-sample results for minimax regret treatment choice in Binomial and Gaus-

4



sian experiments, also with unrestricted policy classes. Yata (2025) gives exact finite-sample minimax regret

results in more general Gaussian settings with binary policies. These papers do not consider treatment choice

with multiple treatments. Another difference is that the present paper only delivers asymptotic performance

guarantees, but does not require distributional assumptions.

Many of the previously mentioned works are concerned with binary treatments, while I am concerned

with multivalued treatments. Zhou, Athey, and Wager (2023) and Kallus and Zhou (2018) consider policy

learning with multivalued treatments and continuous treatments, respectively, but in point-identified settings

where all possible treatment values are implemented in the experiment.

Athey and Wager (2021) extends policy learning to observational studies where exogeneity of treatment

only holds after conditioning on high-dimensional covariates. In contrast, I am motivated by settings in

which decision makers have data from a pilot experiment which tested a few treatment values. When this

is the case, estimating the effects of policies involving new treatments only requires conditioning on the set

of covariates used in the treatment rule, which is typically low-dimensional due to exogenous constraints on

the policy class (Kitagawa and Tetenov 2018). Athey and Wager (2021) also considers infinitesimal, local

changes to treatment values; however, I consider new treatments that are sufficiently far from the support

of the data as to make local approximations or parametric extrapolations unreliable, necessitating a partial

identification approach.

An alternative to the plug-in approach used in this paper and common in policy learning is to average

across the parameter space according to some distribution. Christensen, Moon, and Schorfheide (2023)

study optimal decisions in a discrete set under partial identification where Bayes rules and the bootstrap

distribution are used to average over the space of identified parameters, while a minimax approach is taken

over the partially identified parameters. An important finding is that plug-in-rules may be dominated in

the limit experiment. See Hirano and Porter (2009) and Hirano and Porter (2020) for further discussion of

asymptotic optimality of statistical treatment rules.

The rest of the article is organized as follows: Section 2 describes the decision problem in the population

and shows how to incorporate information from shape restrictions. Section 3 describes the empirical minimax

regret problem and the algorithm for estimating the optimal policy. Section 4 describes the convergence

guarantees. Section 5 applies the method to study personalized subsidies to connect to the electrical grid in

rural Kenya.
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2 Population decision problem

2.1 General framework

A decision maker has access to experimental data and must choose a rule assigning individuals to treatments

based on their observable covariates. The experimental data is described by random variables (D,X, Y )

taking values in D0 × X × Y where D is a treatment taking |D0| = J0 values in the data, X are observed

covariates, and Y is a univariate outcome of interest. D is assumed to be randomly assigned, perhaps

conditionally on X.

Although the random variable D only takes values in D0, the decision maker can consider assigning

individuals to any treatment value d ∈ D where D is potentially larger than D0. Hence, I assume the

existence of potential outcomes Y (d) for all d ∈ D. The set D has cardinality |D| = J <∞, and its elements

are denoted by dj for j ∈ {1, . . . , J}. The observed outcome Y is generated as Y = Y (D). Let P denote the

distribution of (D,X, (Y (d))d∈D).

The decision maker seeks a policy π : X 7→ D which assigns individuals to treatment status based on

their observable covariates. The policy is chosen from some set Π which is taken as given. The treatment

assigned to an individual with covariate values X is π(X) and the realized outcome is Y (π(X)).

The decision maker has some utility function u(d, x, y) which may depend on the treatment assigned,

covariates, and the realized outcome of interest. I assume the decision maker is utilitarian and ultimately

cares about the expected utility derived from the data realized from the policy, resulting in the following

problem that the decision maker would like to solve

max
π∈Π

EP
[
u(π(X), X, Y (π(X)))

]
= max

π∈Π
EP
[
vP (π(X), X)

]

where vP (d, x) := EP [u(d,X, Y (d)) | X = x] is the conditional mean utility.

Two sources of ignorance on the decision maker’s part make this problem infeasible to solve in practice.

The first is that only a sample is observed, so the population probability distribution is unknown. The second

is that even if the population distribution of the data (D,X, Y ) were known, the effects of some treatments

are not identified because they are never observed. In particular, the function v depends on the distribution

of potential outcomes Y (d) for values of d not in D0. Since data on these potential outcomes are not observed

in the sample, the decision maker’s objective is not point identified. To deal with partial identification, I

will solve a proxy problem which is robust to partial identification in that it achieves uniformly low regret
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across the identified set for v. Since only sample data is available, I solve the empirical or plug-in version of

this problem.

Following Manski (2004) and much of the econometric literature on treatment choice, policies will be

evaluated based on their expected regret. For a chosen policy π, the regret of π is the difference in expected

utility obtained from implementing the first-best policy versus π. The first-best policy maps each covari-

ate value x to arg maxd vP (d, x). For any chosen policy π, the expected regret of implementing π versus

implementing the first-best policy is

RP (π) := EP
[

max
d

vP (d,X)− vP (π(X), X)

]
.

Since vP is not identified, regret is not identified either. However, letting VP be the identified set for vP

determined by the experimental data (which will be characterized shortly), the maximum expected regret

that can occur if the decision maker implements policy π is given by

RP (π) := max
v∈VP

EP
[

max
d∈D

v(d,X)− v(π(X), X)

]

I use the minimax regret criterion to guide the choice of policy. This means π is chosen to minimize the

largest regret that can occur within the identified set— that is, RP (π). Therefore, the decision maker chooses

π to minimize the worst-case expected regret as follows

π∗P ∈ arg min
π∈Π

RP (π) = arg min
π∈Π

max
v∈VP

EP
[

max
d∈D

v(d,X)− v(π(X), X)

]
(1)

This ensures that the chosen policy minimizes regret uniformly across the identified set. If the minimizer

is not unique, the decision maker is indifferent among them. Since v is unknown, the minimum maximum

regret is generally larger than zero.

The minimax regret criterion is not the only method for comparing statistical decisions with partially

identified effects. In the context of treatment choice, Manski (2011) compares the minimax regret criterion

with the maximin welfare and subjective expected welfare criteria, two common alternatives. Under the

maximin welfare criterion, the decision maker seeks to maximize the minimum possible level of the outcome

that could be attained as opposed to the minimum gap between the attained and first-best level of the

outcome. The method for construction and estimation of the optimal policy that follows can be applied

when using the maximin welfare criterion as well. Indeed, it can be obtained as a simplification of what

follows by replacing maxd∈D v(d,X) with 0 in (1). However, the resulting estimator will of course have

different behavior and regret properties.
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In some settings the maximin criterion can be quite conservative (see the discussion of Wald (1949)

found in Savage (1951)). Indeed, unless a new treatment d ∈ D \ D0 can be guaranteed to outperform

the original set of treatments in every possible state of the world v ∈ VP , the maximin welfare criterion

will not implement new treatments. This is because under the maximin welfare criterion the decision is

driven entirely by hedging against the least favorable state of the world. In contrast, the minimax regret

criterion considers the suboptimality gap in all possible states of the world. The decision maker measures

the performance of the policy in each state of the world according to the benchmark of optimality in that

state of the world. I follow Manski (2007) in applying the minimax regret criterion to treatment choice. This

represents a particular choice of loss function and in turn delivers a point estimate of an optimal policy.

When the probability of each state of the world v ∈ VP can be described by a probability distribution,

the Bayesian approach to decision-making can be applied. This consists of setting a prior on states of the

world v ∈ VP , using the data to form a posterior, and selecting a treatment policy which maximizes posterior

expected welfare. One potential weakness of this approach in the context of introducing new treatments is

that the lack of identification means that even in large samples, the influence of the prior on the posterior

will be substantial. Yet another possible approach to estimate the effects of treatments that lie outside the

support of the data could be to extrapolate using a parametric model, thus circumventing entirely the need

for partial identification. However, when the new treatments are sufficiently far from the support of the

data, a parametric point-identified model substantially understates the degree of model uncertainty. This

is illustrated in Section 5 where a policy based on parametric extrapolation leads to substantially higher

maximum regret than the estimated minimax regret policy.

2.2 Imposing shape restrictions

I now describe how a tractable characterization of the minimax regret problem (1) can be obtained using

shape restrictions on the treatment response. This requires that the utility function is linear in the outcome

of interest. That is, there exist known functions b and c such that

u(d, x, y) = b(d, x)y − c(d, x).

While it is often possible to avoid the assumption of linear utility by simply redefining Y as utility, in some

applications (such as in Section 5) it may be more natural to impose shape restrictions in terms of the

original outcome variable, which may relate to a structural economic quantity such as a demand curve. In

Section 5, y will be a purchase indicator, b(d, x) will be value of connections net of the cost of the subsidy,
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and c(d, x) represents the cost of offering the subsidy regardless of takeup, which I take to be 0.1

Note that the assumption of linearity implies that

vP (d, x) = b(d, x)mP (d, x)− c(d, x)

where mP (d, x) := EP [Y (d) | X = x] is the conditional mean response function. Moreover, any two proba-

bility distributions which induce the same conditional mean response function will induce the same expected

utility function. I therefore will also use the notation vm(d, x) := b(d, x)m(d, x) − c(d, x) where conditional

mean utilities are indexed by conditional mean response functions rather than probability distributions.

Since b and c are known functions, in order to characterize maximum regret it is sufficient to characterize

the identified set for mP .

The decision maker has experimental data on the effectiveness of some treatments. This means that

mP (d, ·) is identified for every d ∈ D0. For this information on the effects of treatments in D0 to be

informative about the effects of treatments in D \ D0, some structure must be known about the mean

conditional response function mP . For example, the decision maker may know that demand is downward

sloping, that a particular intervention features decreasing returns to scale, or that the treatment response

exhibits some smoothness properties. By combining knowledge of mP (d, ·) for d ∈ D0 with such shape

restrictions, the effects of new treatments may be partially identified.

Let the set of shape-restricted mean conditional response functions be denoted by S. The sharp identified

set for mP is

MP := S ∩ {m : m(d,X) = mP (d,X), P − a.s., ∀d ∈ D0}

which represents the set of functions which obey the shape restrictions and match identified population

means. I assume that S restricts the shape of m(d, x) in d for any given x, leaving the behavior of m across

x unrestricted.

Assumption 2.1: There exist sets Sx ⊂ RJ for each x ∈ X such that

S = {m : m(·, X) ∈ SX P − a.s.}.

Under Assumption 2.1, a hypothetical conditional mean response function m is in S if and only if m(·, X)

satisfies some shape restrictions almost surely in X. That is, S encapsulates assumptions about the shape

1If b(d, x) and c(d, x) represent preferences of a population, they may have to be estimated from the data. While this paper
focuses on uncertainty about the response of y to new treatments, Appendix B discusses how to extend the methods to the
case where b(d, x) and c(d, x) are estimated.
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of mP across d for fixed x, leaving the behavior of mP across x unrestricted (Manski 1997, Manski 2006).

This means that an individual at a particular covariate value is assumed to have an expected treatment

response that is decreasing, convex, smooth, etc. The sets Sx may also stipulate that m(·, x) belongs to

some parametric family, such as polynomials.

Under Assumption 2.1, the maximization over v (equivalently maximization over m ∈ MP ) in (1) is

solved by considering each value of x in isolation and finding the m(·, x) which maximizes regret. This

allows the maximum to be interchanged with the expectation in the minimax regret problem (1)

min
π∈Π

max
m∈MP

EP
[

max
d∈D

vm(d,X)− vm(π(X), X)

]
= min

π∈Π
EP
[

max
m∈MP

(
max
d∈D

vm(d,X)− vm(π(X), X)

)]
= min

π∈Π
EP
[ J∑
j=1

πj(X)Γj,P (X)

]
(2)

where πj(X) = 1[π(X) = dj ] and

Γj,P (X) = max
m∈MP

(
max
d∈D

vm(d,X)− vm(dj , X)

)

which can be interpreted as the contribution to maximum expected regret of assigning a person with covariate

values X to treatment dj .

The optimization problem (2) defines the policy which is optimal in terms of its population minimax

regret. The maximum regret of any policy depends on the strength of the assumptions encoded in S, and

their implications for the size of the identified set MP . Larger identified sets will lead to higher maximum

regret, since it expands the set from which the worst-case response m can be chosen. The size of the identified

set also depends on the relationship between the new and existing treatments. If a new treatment dj lies

between two existing treatments, restrictions on m such as monotonicity can provide informative bounds on

m(dj , x). When dj > d for all d ∈ D0, monotonicity can leave the identified set unbounded in the absence

of additional assumptions.

The benefit of imposing shape restrictions only on the behavior of mP across d is that the representation

(2) is an optimization problem over a population expected loss defined by Γj,P (X). This problem possesses

a form similar to decision problems presented in Athey and Wager (2021), D’Adamo (2023) and others, with

the key distinction that the covariate-level loss Γj,P (X) is itself the solution to an optimization problem

which generally will not have a closed-form solution. Nonetheless, the minimax regret problem (2) can be

cast in terms of the empirical welfare maximization framework of Kitagawa and Tetenov (2018). In the
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following section, I discuss how to set up the empirical analog of the nested optimization problem (2) and

provide a computationally attractive algorithm for solving it.

3 Estimation

The optimization problem (2) is infeasible for the decision maker because in practice only a sample

{(Di, Xi, Yi)}Ni=1 is observed. Instead, I propose solving the empirical analog of (2) to obtain an estimate

of the population optimal policy. Insofar as the constraints of this problem are constructed from consistent

estimators, the optimal policy will inherit similar properties.

In this section I describe the empirical analog of (2) and provide a solution procedure. It consists of first

estimating the effects of the treatments which were implemented in the experimental data, then constructing

estimates of Γj,P (Xi) for every observation i and treatment j, and finally plugging these estimates into the

empirical analog of (2) where the sample mean is used instead of the population expectation. I show how

these estimates of Γj,P (Xi) can be computed using linear programming, resulting in a mixed integer-linear

programming formulation for (2) for many policy classes Π.

First, I estimate the mean conditional response function for every d ∈ D0, denoted m̂0(d, x). Except

for high level conditions on the accuracy of the estimate detailed in Section 4, I remain agnostic about

how the estimate is constructed. The estimate m̂0 is used to construct an estimate of the identified set for

mP (·, Xi) for each i as a function of d in all of D, which represents covariate-level bounds on the effects of

new treatments. The empirical analog of MP is the set of functions which obey the shape restrictions and

match estimated sample means, and is denoted by M̂ := S ∩ {m : m(d,Xi) = m̂0(d,Xi) ∀i, ∀d ∈ D0}. I

assume it is nonempty. As discussed in Section 4, estimates which violate the shape restrictions and hence

yield an empty M̂ can be projected onto the set of functions which satisfy the shape restrictions. Since these

are assumed to hold in the population, imposing such shape restrictions on estimators typically improves

performance in finite samples (Chetverikov, Santos, and Shaikh 2018).

This is then used to construct estimates Γ̂j(Xi) of the covariate-level loss Γj,P (Xi), for every observation

i and treatment j. That is,

Γ̂j(Xi) = max
m∈M̂

(
max
d∈D

vm(d,Xi)− vm(dj , Xi)

)
(3)

These estimates are then used in the program

π̂ := arg min
π∈Π

n∑
i=1

J∑
j=1

πijΓ̂j(Xi) (4)
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where πij = 1[π(Xi) = dj ].

Having defined the estimator for the minimax regret optimal policy (4), I turn to computationally con-

venient methods for estimating Γ̂j(Xi) and thereby the policy π̂. This is achieved by expressing Γ̂j(Xi)

through linear programs and considering policy classes Π which can be expressed using linear and integer

constraints. In doing so, I impose some additional structure on the set of shape restricted functions S speci-

fied in Assumption 2.1. Specifically, I assume the a priori knowledge on shape restrictions can be summarized

through ` linear inequalities on the treatment response vector for almost every x.

Assumption 3.1: There exists a matrix S ∈ R`×J and a vector r ∈ R` such that the conditional mean

response function m(d, x) is in the set S if and only if Sm(·, X) ≤ r P−almost surely, where m(·, x) :=

(m(d1, x), . . . ,m(dJ , x))′.

This assumption strengthens Assumption 2.1 by requiring that the shape restrictions are linear in the

treatment response vector. Such linear restrictions can accommodate a wide range of shape restrictions

that may be used in practice. For example, restrictions on the first, second, or higher differences of the

mean conditional response can be expressed this way, allowing for mP to be constrained to be decreasing,

Lipschitz, convex, or obey higher order smoothness conditions (Mogstad, Santos, and Torgovitsky 2018).2

Upper and lower bounds on mP can also be expressed through such constraints. Appendix D describes in

detail how the restrictions of decreasing demand and diminishing responsiveness to the subsidy are applied

to the empirical example in Section 5.

The following examples convey the practical use of the assumption.

Example 3.2: Suppose D = {1, 2, 3, 4} and mP (d, x) is assumed to be increasing and concave in d. Then

m ∈ S if and only if Sm(·, X) ≤ r P -almost surely where

S =



1 −1 0 0

0 1 −1 0

0 0 1 −1

1 −2 1 0

0 1 −2 1


r =



0

0

0

0

0


Here the first three rows of S ensure that m is increasing, and the second two rows of S ensure concavity. ♦

Example 3.3: Suppose mP (·, x) is assumed to be a polynomial of degree L where J0 − 1 ≤ L ≤ J − 1, in

addition to shape restrictions such as boundedness or monotonicity. These restrictions can be imposed by

2The analysis can be extended to allow S and r to depend on x. I have focused on the case where the shape restrictions are
the same for all x for simplicity.
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using Bernstein polynomials. That is,

Sx =

{
m ∈ RJ : mj = B(dj , L)′β, Tβ ≤ r β ∈ RL+1

}

where B(dj , L) is an L+1 vector of Bernstein polynomials of degree L in dj , and β is a vector of coefficients.

The matrix T encodes shape restrictions on m through constraints on the coefficients β.

Let B be the J × (L+ 1) matrix of Bernstein polynomials of degree L. Since B has linearly independent

columns, it has a left inverse B† and m ∈ Sx if and only if Sm ≤ r where S = TB†. ♦

To ensure that M̂ consists of functions which match sample analogs of identified means on D0, I introduce

the J0×J matrix F where Fkj = 1 if dj is the kth element of D0 and Fkj = 0 otherwise. Then the identified

set MP is the set of all m such that Sm(·, X) ≤ r and Fm(·, X) = m0,P (·, X) almost surely, where

m0,P (·, X) = (mP (d,X))d∈D0 . That is,

MP = {m : Sm(·, X) ≤ r, Fm(·, X) = m0,P (·, X), P − a.s.}

which allows the empirical analog M̂ to be expressed as

M̂ = {m : Sm(·, Xi) ≤ r ∀i, Fm(·, Xi) = m̂0(·, Xi) ∀i}

where m̂0(·, x)′ = (m̂0(d, x))d∈D0
. By expressing M̂ this way it is possible to express Γ̂j(Xi) as the maximum

of J linear programs. Define the estimate

Γ̂jk(Xi) := max
m∈M̂

vm(dk, Xi)− vm(dj , Xi)

which measures the contribution to expected regret of assigning an individual dj instead of assigning them

dk, conditional on Xi. Recall that b(d, x) and c(d, x) parametrize the linear utility function. For each

observation i and treatments j and k, construct bjk(Xi) as a vector in RJ with b(dk, Xi) in the kth entry

and b(dj , Xi) in the jth entry, and zeros everywhere else. Construct cjk(Xi) likewise. Then

Γ̂jk(Xi) = max
m∈RJ

bjk(Xi)
′m−cjk(Xi)

s.t. Sm ≤ r

Fm = m̂0(·, Xi).

(5)

After defining Γ̂j(Xi) = maxk Γ̂jk(Xi), these estimates can be used in the program (4).
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Despite the linear programming representation of Γ̂jk(Xi), computing Γ̂j(Xi) for all i and j appears to

require NJ2 linear programs total (one for each i, j, and k combination). However, a dual formulation

detailed in Appendix D demonstrates that Γ̂j(Xi) can be computed with a single linear program. Moreover,

the linear programs for all observations can be stacked together and solved simultaneously. This can be done

prior to or in conjunction with the policy optimization over π. Additionally, in the case of discrete covariates,

it is only necessary to construct Γ̂j(Xi) for unique values of Xi, which may be substantially smaller than

the sample size N .

Having computed the covariate-level loss estimates Γ̂j(Xi) that appears in (4), optimization of the policy

π over the set Π can be performed according to established methods in policy learning. In many cases, Π can

be represented by linear and integer constraints. Examples include linear eligibility scores, decision trees, and

treatment sets with piecewise linear boundaries (Kitagawa and Tetenov 2018, Mbakop and Tabord-Meehan

2021, Zhou, Athey, and Wager 2023). When this is the case, the problem (4) is a mixed integer-linear program

for which highly optimized solvers are readily available. In Section 5, I use a class of linear eligibility score

policies, which is described using linear and integer constraints in Appendix D.

Since optimization of π using mixed integer-linear programming is standard practice in policy learning

problems, the only additional computational burden resulting from considering new treatments is that of

solving the linear programs corresponding to Γ̂j(Xi) as described above. For the example in Section 5 I

found the computation time for Γ̂j(Xi) to be at most a similar order of magnitude as that of the estimation

of π̂ and sometimes much shorter, depending on the complexity of the policy class. Constructing Γ̂j(Xi)

can often benefit from parallelization so that the overall computational burden is not much larger than the

point identified case.

4 Regret convergence

In this section I investigate theoretical guarantees on the performance of the estimated policy π̂. Following

Manski (2004), I evaluate the performance of policies in terms of their statistical regret. In particular, I

show that the regret of the estimated policy π̂ converges to the lowest possible maximum regret the decision

maker could achieve if the population identified set under distribution P were observed, uniformly across P .

Specifically, the regret guarantees will be of the form

sup
P

(
EP [RP (π̂)]−RP (π∗P )

)
≤ O(N−1/2 ∨ ρ−1

N )
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where P ranges across an appropriate set defined below, implying that

sup
P

EP [RP (π̂)] ≤ sup
P
RP (π∗P ) +O(N−1/2 ∨ ρ−1

N )

for an appropriate sequence ρN →∞. Since the estimated policy π̂ is constructed using consistent estimates

of the partially identified set, these guarantees will generally be asymptotic in nature. Above, the expectation

only averages across realizations of the estimator π̂ because RP (·) is defined using the population probability

measure P .

The interpretation of this bound is that in large samples the performance of the estimated policy π̂ as

measured by its maximum regret across distributions P (and the identified set under P ) approaches the per-

formance of the population optimal policy π∗P . This bound on the difference between the maximum regret

of π̂ and the best-in-class policy π∗P is similar to the bounds often obtained in the empirical welfare maxi-

mization or empirical risk minimization literature in the point-identified case (e.g. Kitagawa and Tetenov

(2018)) after replacing (unidentified) welfare with maximum regret. Since 0 ≤ RP (π∗P ) ≤ RP (π̂), this means

that averaging across realizations of the estimate π̂, the worst-case expected regret of π̂ is growing arbitrarily

close to RP (π∗P ), the lowest possible maximum regret the decision maker could achieve in the absence of

sampling uncertainty. In general no policy π can achieve zero maximum regret across the entire identified

set, resulting in RP (π∗P ) ≥ 0 typically holding with strict inequality for the population optimal π∗P .

I now discuss assumptions sufficient for such guarantees. The main assumptions on the joint distribution

of the data are random assignment of treatment and boundedness of the components of utility.

Assumption 4.1: {(Yi, Di, Xi)}ni=1 are i.i.d. copies of (Y,D,X), generated by P which satisfies

1. D ⊥ Y (d) | X for all d ∈ D

2. There exists C < ∞ such that mP (d,X), b(d,X), and c(d,X) are all bounded in absolute value by C

almost surely, for each d ∈ D

Assumption 4.1.1 reflects the standard exogeneity condition that holds in the randomized experiment

settings I use as a motivating example. It may also hold in observational studies, in which case it may be

a strong assumption. In many randomized experiments the stronger condition D ⊥ (Y (d), X) is satisfied.

When this is true, it is sufficient to estimate mP (d, x) = EP [Y (d) | X̃ = x], where X̃ is a subset of covariates

X which directly enter the policy. X̃ may be of a much lower dimension than X since policies are often

restricted to be relatively simple (Kitagawa and Tetenov 2018). In Section 5, there are two covariates which

enter the policy. Henceforth, I do not distinguish between the covariates required for Assumption 4.1.1 and

the covariates used for the policy. Assumption 4.1.2 restricts decision maker preferences by requiring that the
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mean response function is bounded, as well as the parameters of the linear utility function. In the example

of Section 5 the outcome Y is bounded while b(d, x) is constant in x and c(d, x) = 0, satisfying this condition

trivially.

The estimate m̂ also must be sufficiently accurate in the following sense

Assumption 4.2: For some sequence ρN →∞ and some class of distributions P, the estimate m̂ satisfies

1. lim supN→∞ supP∈P ρNEP
[

1
N

∑N
i=1‖m̂0(·, Xi)−m0,P (·, Xi)‖

]
<∞

2. M̂ = {m : Sm(·, X) ≤ r, Fm(·, X) = m̂0(·, X)} is nonempty, almost surely, for all P ∈ P.

One common setting in which Assumption 4.2.1 holds with ρN = N1/2 is when the covariates are discrete

and sample averages may be used. Alternatively, mP (d, ·) may be assumed to belong to a parametric family,

for each value of d ∈ D0. Since mP (d, ·) is identified holding d ∈ D0 fixed, parametric assumptions on

the relationship between covariates and the outcome of interest conditional on treatment values observed

in the data may be weaker assumptions than the kinds of parametric assumptions that would allow one

to extrapolate to new treatments, in the sense that the former are testable. Kitagawa and Tetenov (2018)

provides more general conditions under which Assumption 4.2.1 is satisfied when m̂ is constructed via local

polynomial regression.

Assumption 4.2.2 is not a restrictive assumption. Unless mP is on the boundary of S, the estimated set M̂

will typically be nonempty with high probability as N grows even if 4.2.2 is not assumed. In finite samples,

an estimator that yields an empty M̂ can be projected onto the set of all m̂ such that M̂ is nonempty. Since

m̂0(·, X) is a vector in RJ0 and S is described by linear inequalities, this is a convex minimum norm problem

that can be solved by quadratic programming.

Finally, the choice set Π is assumed to satisfy a standard condition on its complexity.

Assumption 4.3: For each d ∈ D, the class of sets {x : π(x) = d, π ∈ Π} is a VC-class of sets with VC

dimension at most V <∞.

For a formal definition of the VC dimension, see Van Der Vaart and Wellner (1996). The assumption

of finite VC dimension limits the complexity of the class Π; specifically, Assumption 4.3 ensures that Π

cannot be so flexible as to assign any arbitrary subset of a collection of V + 1 points in X to treatment d.

This assumption is commonly invoked in offline policy learning settings as a way to express the constraints

faced by decision makers (Kitagawa and Tetenov 2018); this may be for the sake of interpretation, fairness,

ease of implementation, political constraints, etc. The types of rules discussed in Section 3 which can be

expressed using linear and integer constraints, like linear eligibility scores and decision trees, satisfy this

assumption under bounds on the number of inputs to the eligibility score or the depth of the decision tree.
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The assumption of VC dimension also plays an important role in the convergence of the regret of the optimal

policy by ensuring the policy does not overfit the sample data. This assumption can be relaxed by instead

using a holdout validation sample which regularizes estimation of the policy (Mbakop and Tabord-Meehan

2021).

Under these assumptions, the following regret bound is obtained:

Theorem 4.4: Let PC be a set of distributions for which (1) Assumptions 4.1 holds with constant C and

(2) Assumption 4.2 holds. Under Assumptions 3.1 and 4.3,

sup
P∈PC

(
EP [RP (π̂)]−RP (π∗P )

)
≤ O(N−1/2 ∨ ρ−1

N )

is satisfied. As a result,

sup
P∈PC

EP [RP (π̂)] ≤ sup
P∈PC

RP (π∗P ) +O(N−1/2 ∨ ρ−1
N ) (6)

The rate of convergence of the maximum regret is the slower of two rates: N−1/2, and the estimation

rate of m̂0 in Assumption 4.2. This first rate is driven by the convergence of an empirical process uniformly

over the policy class, which is N−1/2 under Assumption 4.3 (Van Der Vaart and Wellner 1996). The second

rate reflects that the regret of the estimated policy depends on the behavior of the linear program (5), the

constraints of which depend on identified moments of the data and must be estimated. In turn, the value of

the linear program can be shown to converge to its population counterpart at the same rate as the constraints

(see Hoffman (1952) and Rockafellar and Wets (2009); related results in econometrics include Fang et al.

(2023) and Freyberger and Horowitz (2015)). Because Assumption 4.2 is only a condition on the rate of

convergence of this estimator, the bound of Theorem 4.4 is a rate result. If non-asymptotic bounds on the

estimator m̂0 are available, (for example if covariates are discrete and outcomes are bounded), then the

proof of Lemma 4.6 can be used to obtain non-asymptotic regret bounds. This is developed in more detail

in Appendix B.

I give a heuristic sketch of the proof and defer the details to Appendix A. I first define the quantities

R̃N,P (π) :=
1

N

N∑
i=1

J∑
j=1

πijΓj,P (Xi)

RN (π) :=
1

N

N∑
i=1

J∑
j=1

πijΓ̂j(Xi)

R̃N,P (π) measures the in-sample or empirical maximum regret of policy π, supposing the true mP and hence
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the true Γj,P were known. RN (π) is the objective function of the empirical minimax regret problem (4).

The difference between the maximum regret of the estimated policy and that of the minimax regret optimal

policy can then be decomposed in terms of these quantities as follows:

0 ≤ RP (π̂)−RP (π∗) = RP (π̂)− R̃N,P (π̂)

+ R̃N,P (π̂)−RN (π̂)

+RN (π̂)−RN (π∗)

+RN (π∗)− R̃N,P (π∗)

+ R̃N,P (π∗)−RP (π∗)

(7)

The first and last lines of (7) each concern the difference between a sample mean and the population

expectation, holding the policy and distribution fixed and assuming Γj,P (X) is known. They are each

bounded by

sup
π∈Π

∣∣∣∣RP (π)− R̃N,P (π)

∣∣∣∣
The second and fourth lines of (7) concern the difference between sample means of the true quantities Γj,P (Xi)

and their estimated counterparts, holding the policy and distribution fixed. They are each bounded by

sup
π∈Π

∣∣∣∣R̃N,P (π)−RN (π)

∣∣∣∣
The third line of (7) concerns the difference between the in-sample performances of π̂ and π∗. This is always

negative because π̂ is optimal for the empirical minimax regret problem (4). Hence, the decomposition (7)

yields

RP (π̂)−RP (π∗) ≤ 2 sup
π∈Π

∣∣∣∣RP (π)− R̃N,P (π)

∣∣∣∣ (8)

+ 2 sup
π∈Π

∣∣∣∣R̃N,P (π)−RN (π)

∣∣∣∣ (9)

Term (8) is the sup-Π norm of a centered empirical process. Its expectation can be shown to converge

uniformly at N−1/2 rate using techniques in empirical process theory.

Lemma 4.5: Under assumptions 3.1, 4.1, and 4.3,

sup
P∈PC

EP
[

sup
π∈Π

∣∣∣∣RP (π)− R̃N,P (π)

∣∣∣∣] ≤ K
√
V

N
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for some constant K depending only on C and J .

The constant K hides a dependence on the number of treatments J . This dependence represents a cost

to introducing arbitrarily large sets of new treatments. Just as Assumption 4.3 restricts the complexity of

the sets of covariate values assigned to each treatment, the assumption of a fixed J represents an exogenous

constraint on the overall complexity of the policy.

Term (9) concerns the difference between the value of the linear program defining Γ̂jk(Xi), in which

the constraints are estimated, versus the linear program defining Γjk,P (Xi), in which the true value of the

constraint vector is used. When the estimated constraints converge at N−1/2 rate, the value of the linear

program can be shown to exhibit similar convergence uniformly across Π. More generally, the value of the

linear program converges at the same rate as the estimated constraints. This is because the feasible set of a

linear program is Lipschitz in its constraints with respect to the Hausdorff metric.

Lemma 4.6: Under assumptions 3.1, 4.1, and 4.2,

sup
P∈PC

EP
[

sup
π∈Π

∣∣∣∣R̃N,P (π)−RN (π)

∣∣∣∣] ≤ O(ρ−1
N )

Taking the expectation of the bound given by (8) and (9) and combining this with Lemmas 4.5 and 4.6

yields the bound of Theorem 4.4.

5 Application to rural electrification

Investment in energy infrastructure is an important focus of development aid and there is a large body of

research in development economics devoted to its study (reviews include Lee, Miguel, and Wolfram 2020a,

Peters and Sievert (2016), and Van De Walle et al. (2015)). Lee, Miguel, and Wolfram (2020b) examines

the relationship between the price of connections to the electrical grid and takeup in rural Kenya. This

particular setting provides a compelling use case for the procedure outlined in this paper. There are only

four prices observed in the data, leading to substantial model ambiguity in the form of partial identification

of the demand curve outside these four prices. Further, the treatments are subsidies valued at hundreds

of US dollars, making subsequent experimentation with new treatments expensive. In this section, I take

experimental data collected to study the economics of rural electrification and illustrate how the method

outlined in the present paper can be used to design cost-effective targeted subsidy policies to maximize

household takeup.

Prices of d-thousand Kenyan shillings for d ∈ D0 = {0, 15, 25, 35} are randomly offered to households,

who have an eight-month period in which to decide whether to purchase the connection at the offered price.
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After the period is over, households continue to have the option to connect at the full price of 35 thousand

shillings. Here D is price, Y is a takeup indicator, and X is a two-dimensional random vector containing

household size and income.

Given this experimental data, I consider a decision maker able to offer subsidies to households. However,

the decision maker has no reason to restrict themselves to the four prices that appear in the data. In my

baseline analysis, I examine an expanded treatment set of D = {0, 2.5, 5, . . . , 35} thousand shillings. The

sensitivity of results to coarser and finer treatment sets is reported in Appendix E. I assume the decision maker

values each connection at α-thousand Kenyan shillings and must pay the value of the subsidy if the recipient

purchases a connection. There is no fixed cost for offering the subsidy. This means u(d, x, y) = (α−(35−d))y

so that b(d, x) = α − (35 − d) and c(d, x) = 0. As a baseline specification, I take α to be the full market

price of 35 thousand shillings and explore policies under other valuations in Appendix E.

5.1 Optimal policy without covariates

Before estimating the optimal policy mapping covariate values to prices, I illustrate the method for the

simple case of no covariates. Ignoring covariates for the time being makes the process easier to visualize,

and transparently demonstrates how combining the experimental data, shape restrictions, and the minimax

regret criterion drives the choice of whether and how to implement new treatments. In the next subsection,

where I consider policies which target prices on the basis of covariates, the worst-case regret is computed for

each covariate value similarly to the no-covariate case of this subsection.

I first estimate the average takeup at each price. Using these first stage estimates, I construct bounds for

the effects of each new treatment and explain the difference between these pointwise bounds on outcomes

and the estimated identified set M̂. Then I consider a fixed policy which assigns a single price to the entire

population and find the regret-maximizing demand curve. I find the minimax regret optimal policy by

finding the policy for which the maximum regret is as small as possible.

For each d in the experimental data, I plot the mean takeup and utility in Figure 1. Mean takeup

m0,P (d) = EP [Y (d)] is identified from the experimental data for d ∈ D0, and estimated mean takeup m̂0(d)

is simply the sample mean at each price. Expected utility for experimental subsidy values is given by

vmP
(d) = (α− (35−d))mP (d) and is estimated for d ∈ D0 by plugging in m̂0(d). The price d = 0 represents

a fully subsidized connection, which is clearly undesirable from the decision maker’s perspective because the

decision maker will receive 0 utility, which is the minimum possible, regardless of whether the household

connects. Amongst the treatment values that appear in the data, d = 15 achieves the highest utility on

average. While not shown here, this is largely true of estimated mean utility conditional on X as well.
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Figure 1: Takeup and utility by price

Mean estimated takeup and utility at each price included in the experiment of Lee, Miguel, and Wolfram (2020b).
95% confidence intervals shown in bars.

Indeed, setting D = D0 and solving the empirical welfare maximization problem as in Kitagawa and Tetenov

(2018) with a linear eligibility score as the policy class assigns all individuals to a price of 15.

A key question from the decision maker’s perspective is whether prices not in the support of D in the

data could yield higher utility, and how data from the experiment can provide information on the magnitude

of such gains. To answer this, I impose shape restrictions which imply bounds on takeup at new prices.

The shape restrictions I study here are that demand is downward sloping and the price subsidy exhibits

diminishing returns. Takeup is also bounded between zero and one. Downward sloping demand is expected

to be satisfied in all but a few exceptional markets, and represents one of the weaker assumptions a researcher

may impose. Diminishing sensitivity to treatment may be more context specific, and can be motivated by

a simple binary choice model where the density of valuations is decreasing on the support of treatments.

Another setting where such a restriction may be applied is the analysis of production functions (Manski 1997).

The shape restrictions I impose, which can be expressed as linear inequalities involving the J-dimensional

vector m as shown in Appendix D, define the constraint Sm ≤ r in the linear program (5).

To explore the potential effects of new treatments informally in the simple case of no covariates, in

Figure 2 I plot pointwise upper and lower bounds on takeup at each possible price. These are obtained

by calculating minm∈M̂m(d) and maxm∈M̂m(d) for each d. Note that the lower bound is not convex.

This is an illustration of the non-rectangularity induced by the shape restrictions– there is no m ∈ M̂

that simultaneously minimizes takeup for all prices d. More generally, not every curve that lies within the

pointwise bounds of Figure 2 satisfies the shape restrictions. This can be expressed formally as

M̂ ⊂
{
m̃ ∈ RJ : min

m∈M̂
m ≤ m̃j ≤ max

m∈M̂
m,∀j

}
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Figure 2: Bounds on takeup and utility at each price

The maximal and minimal possible expected takeup at each price, and the corresponding bounds on expected
utility generated by these bounds on takeup.

with strict containment. This difference is key for the informativeness of the linear program (5) because

regret is defined by comparing the outcomes under the chosen policy to those of the first-best policy under

the same demand curve m. If the chosen policy achieves low utility for one demand curve and the first-best

policy achieves high utility only for a different demand curve, this does not contribute to high regret.

Along with the bounds on takeup in Figure 2, I also plot the bounds on expected utility vm generated

by the bounds on takeup. These curves illustrate a range of possible outcomes that may result from imple-

menting new treatments. The upper bounds on utility illustrate the potential for much better outcomes as

a result of implementing new treatments, especially in the range of 7.5 to 12.5. The lower bounds imply the

possibility of worse outcomes as well. A maximin welfare approach to this problem would not assign a price

in D \ D0 to anyone for whom that price was not guaranteed to outperform the prices in D. This ends up

assigning a price of 15 to the entire sample, which seems excessively conservative in this example3. On the

other hand, the minimax regret approach considers losses relative to the ex-post optimal decision in each

state of the world represented by m ∈ M̂.

Given the bounds in Figure 2, one could imagine naively constructing Γ̂jk by comparing the worst possible

vm(dj) to the best possible vm(dk). For example, taking dk = 7.5 and dj = 10 would result in an estimate

of about 4.5 − 3.2 = 1.3. However, recall that these bounds on vm were constructed from the bounds on

m. Observing the bounds on m, it can be seen that the demand curve m which achieves maximal takeup at

d = 7.5 and minimal takeup at d = 10 is not convex, and thus the regret estimate obtained by comparing

the pointwise bounds is unnecessarily pessimistic. Likewise, taking dk = 12.5 and dj = 10 and comparing

the pointwise bounds would yield an estimate of about 4.4− 3.2 = 1.2, but a demand curve which achieves

3It is not generally true that the maximin welfare policy restricts to the original set of treatments. See Appendix E.1 for an
example in which the maximin welfare policy assigns a new treatment to the population.
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Figure 3: Regret-maximizing demand curves for alternative policies

The demand curves that maximize regret for each of three policies– assigning d = 5 to everyone, assigning d = 10 to
everyone, and assigning d = 20 to everyone. Also plotted are the utility curves generated by these
regret-maximizing demand curves. Given a policy, the regret-maximizing demand curve is chosen to achieve low
utility at the chosen price but high utility elsewhere.

these bounds is not decreasing. Formally, maxm[vm(dk)− vm(dj)] ≤ maxm vm(dk)−minm vm(dj). Thus, it

is necessary to construct the regret estimates by finding a demand curve m which maximizes regret while

satisfying the shape restrictions. This illustrates that the linear program (5) defining Γ̂jk, while requiring

more computations than pointwise bounds for each dj ∈ D, carries additional useful information.

To understand how maximal regret is computed for each policy, I plot regret-maximizing demand curves

for each of three different policies in Figure 3. In this case, a policy is a single value of d that will be assigned

to the entire population. The regret-maximizing demand curve is the vector m which solves (3) with no

covariates. To compute it, I solve (5) for each k and find the m corresponding to the optimal k. Supposing

the decision maker assigns a price of d = 5 to the entire population, the regret-maximizing demand curve

is chosen to yield low expected utility when d = 5 but high utility for some other price, thus incurring high

regret in the sense that the chosen policy of d = 5 was ex-post a poor policy compared to, say, a price of

d = 15. The same process is enacted for the policies which assign d = 10 to the entire population and

d = 20 to the entire population. Under the policy d = 20, regret is very high because the difference between

expected utility at d = 20 and the optimal expected utility under the regret-maximizing demand curve is

very large. Comparatively, the maximum regret incurred under the policy d = 10 is small. Importantly, the

regret-maximizing demand curves which generate these worst-case utility curves obey the shape restrictions,

as can be seen in the left-hand pane of Figure 3.

Finally, I compute the optimal policy which does not target based on covariates. The solution to the

empirical minimax regret problem without covariates is given by the policy which assigns the price d = 10 to

the population. This means that across all demand curves m ∈ M̂, vm(10) is uniformly as close as possible

to maxd vm(d). To visualize this, in Figure 4 I overlay the regret-maximizing demand curve for the policy
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Figure 4: Regret-maximizing demand curves for d = 10

The demand curve that achieves maximum regret under the minimax regret-optimal price of d = 10 and the
resulting welfare curve. The curves lie between the pointwise bounds examined in Figure 2.

d = 10 on top of the bounds on takeup and welfare plotted in Figure 2. The m which maximizes regret is the

one which maximizes utility at d = 7.5 but performs somewhat worse when d = 10. This difference between

the best possible outcome and the outcome realized under the chosen policy is the regret that nature seeks

to maximize through the choice of m and the decision maker seeks to minimize through the choice of π.

Observe that maximum regret, given by maxm[vm(7.5)− vm(10)], is much smaller than a naive comparison

of the bounds. Hence, an adversarially chosen demand curve in M̂ can make a price of d = 10 perform only

mildly suboptimally.

5.2 Optimal policy with covariates

Having illustrated the method for estimating m̂0, constructing M̂, and constructing π̂ in the simple case

of no covariates, I now solve for the optimal policy when the decision maker can target subsidies based on

household size and income. I construct the estimate m̂0(d, x) using a Lasso-penalized logistic regression of

takeup on a dictionary of Chebyshev polynomials in household size and income, for each d ∈ D0. As before,

I use the shape restrictions that demand is decreasing and convex in d for every x. For some observations,

the estimates m̂0(d,Xi) violate these shape restrictions. When this happens, I replace the estimates with

arg minm‖m(d) − m̂0(d,Xi)‖, where the minimum is taken over all m(d) ∈ RJ0 that are decreasing and

convex in d and bounded between 0 and 1. This ensures that M̂ is nonempty. These estimates are used to

obtain Γ̂j(Xi) for each i and j.

Finally, to estimate the optimal policy, I consider a policy class of linear eligibility score rules where

each treatment shares the same eligibility score, but different cutoffs. The decision maker chooses a vector

of covariate weights β and a vector of increasing cutoffs {cj}J−1
j=0 . A household with covariates Xi receives

treatment dj if cj−1 < X ′iβ ≤ cj , where c0 = −∞ and cJ = ∞. I impose that the eligibility score increases

24



with income, implying that poorer households receive lower prices. Formally,

Π =

{
π : π(x) =

J−1∑
j=1

(dj+1 − dj)1[X ′iβ > cj ], cj−1 ≤ cj , β1 > 0

}
(10)

Appendix D discusses how this class can be formulated with linear and integer constraints, resulting in a

mixed integer-linear program formulation for the empirical minimax regret problem (4).

Figure 5: Optimal policy

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicate which covariate
values are assigned to each treatment.

Table 1: Optimal policy
d 7.5 10.0 12.5 15.0 17.5 20.0

% Treated 34.1% 52.2% 8.3% 0.3% 2.2% 2.9%

Cutoff 14.86 38.54 67.16 70.05 81.97 102.96
(β = [0.65, 2.973])

Percent of population assigned to each treatment and eligibility score cutoff for each treatment for which a nonzero
share of the population was assigned. Households were assigned to treatment j if their score was below cutoff j and
above cutoff j − 1.

The optimal allocation is illustrated in Figure 5, and exact estimates of the optimal policy along with

the fraction of the population assigned to each treatment are presented in Table 1. The optimal allocation

assigns poor, small households the lowest prices as they have the lowest willingness to pay. Almost the entire
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population is assigned a price not observed in the experimental data, with less than 1% of the population

being assigned to the price d = 15 which was optimal amongst the prices that were used in the experiment.

Most of the population is assigned to a price of d = 7.5 or d = 10.

5.3 Comparison with other policies

I compare the optimal policy in Figure 5 with two other policies that a decision maker might use in the

absence of the method proposed in this paper. I evaluate the performance of these policies in terms of their

estimated maximum regret, and compare this to the estimated maximum regret of the policy proposed in

this paper. These heuristic policies, which are not designed to control maximum regret, have the potential

to perform substantially worse than the minimax regret optimal policy.

For the first benchmark, I estimate the optimal policy using an ad-hoc parametric interpolation that

a decision maker might use to forecast the effects of new treatments. I estimate takeup using OLS with

linear and quadratic terms in household size and income, motivated by the near-quadratic response to price

observed in Figure 1. This means that the identified set M̂ is a singleton, making the maximization over M̂

trivial. These takeup estimates are then used to construct a policy which maximizes estimated utility. The

resulting treatment allocation is shown in Figure 6, and the associated policy is given in Table 2.

Figure 6: Optimal policy with parametric interpolation

The estimated optimal treatment allocation under the parametric interpolation as a function of household size and
earnings. The size of the dots is proportional to the number of people at each value of covariates. The shaded
regions indicate which covariate values are assigned to each treatment.
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Table 2: Optimal policy with parametric interpolation
d 10.0 12.5

% Treated 95.1% 4.9%

Cutoff 2.99 3.89
(β = [0.039,−0.001])

Percent of population assigned to each treatment and eligibility score cutoff under the parametric interpolation, for
each treatment for which a nonzero share of the population was assigned. Households were assigned to treatment j
if their score was below cutoff j and above cutoff j − 1.

For the second benchmark, I estimate the optimal policy under the restriction that the policy cannot

assign new treatments. This reflects what a decision maker might do if they did not have a method for

evaluating and choosing policies which involve new treatments. That is, I take the regret estimates Γ̂j from

the Lasso model and use it to construct a minimax regret policy under the additional restriction that the

policy cannot assign new treatments. This reflects the maximum regret that a policymaker would incur by

choosing not to assign new treatments, even if it were possible to do so. The resulting treatment allocation

is shown in Figure 7, and the associated policy is given in Table 3.

Figure 7: Optimal policy with no new treatments

The estimated optimal treatment allocation under the restriction that the policy cannot assign new treatments, as a
function of household size and earnings. The size of the dots is proportional to the number of people at each value
of covariates. The shaded regions indicate which covariate values are assigned to each treatment.

In Table 4, I compare the estimated maximum regret of the estimated policy π̂ with the estimated
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Table 3: Optimal policy with no new treatments
d 15.0 25.0

% Treated 98.0% 2.0%

Cutoff 0.18 0.24
(β = [0.002,−0.01])

Percent of population assigned to each treatment and eligibility score cutoff under the restriction that the policy
cannot assign new treatments, for each treatment for which a nonzero share of the population was assigned.
Households were assigned to treatment j if their score was below cutoff j and above cutoff j − 1.

Table 4: Comparison of maximum regret of different policies
Policy Maximum Regret Percent Increase

Lasso 481.27

Parametric 612.54 27.28 %

Restricted 1377.21 186.17 %

Estimated maximum regret of the optimal policy, the policy with parametric interpolation, and the policy with no
new treatments.

maximum regret of the other two policies described above. By construction, the estimated policy π̂ minimizes

the estimated maximum regret.

The parametric extrapolation results in higher estimated regret than the method proposed in this paper,

which takes into account non-identification of the effects of new treatments. Thus, whether the decision

maker should use the parametric extrapolation is sensitive to how much they trust the parametric form.

If the parametric model is used only for convenience and the actual identified set is described by M, then

the parametric model may lead to higher regret than the robust method proposed in this paper. When

the decision maker uses the parametric extrapolation, they fail to consider the worst-case effects of new

treatments, and hence are overconfident in the benefits of new treatments.

Restricting to the support of the experimental data greatly increases maximum regret. When the decision

maker chooses not to assign new treatments, the worst-case utility function vm will be high on the set of new

treatments to make the regret of the chosen policy large (in the case without covariates, the worst-case utility

curve coincides with the upper bound on utility at d = 10 in Figure 2). By implementing new treatments,

the decision maker can ensure they don’t miss out on potentially large gains from these new treatments.

However, it is not guaranteed that the decision maker will choose to implement new treatments, as they must

also ensure the potential downside of implementing new treatments is not so large as to make worst-case

regret higher than restricting to old treatments.
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6 Conclusion

Experiments may not pilot all possible treatments a decision maker may consider. The existing literature on

policy learning and treatment choice does not offer much guidance for how to use data on some treatment

values to design policies involving new treatment values. I use data on previously observed treatments,

partial identification, and the minimax regret criterion to extend empirical welfare maximization methods to

settings where new treatments may be considered. Since the effects of new treatments are partially identified,

a single policy is chosen to uniformly minimize regret across the identified set. The empirical minimax regret

estimator is computationally tractable and possesses favorable regret convergence properties. In the setting

of targeting subsidies to connect to the electrical grid, the estimator takes information on a small set of

treatments and provides informative bounds on the effects of a much richer set new treatments, resulting in

policies that implement new treatments which are uniformly close to optimal in every state of the world.
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A Proof of Theorem 4.4

A.1 Intermediate results

I first introduce some notation and state existing results that I will use. Given a class of functions F , the

Rademacher complexity of F is defined as

RN (F) := E
[

sup
f∈F

∣∣∣∣ 1

N

∑
i

εif(Xi)

∣∣∣∣]

where εi are i.i.d. Rademacher random variables.

We say T is a δ-cover of a metric space (F , h) if for every f ∈ F , there is some fi ∈ T such that

h(fi, f) ≤ δ. The cardinality of the smallest δ-cover of F is called the δ-covering number of F and is denoted

N(δ,F , h).

I make use of the following existing results:

Lemma A.1: (Kitagawa and Tetenov (2018) Lemma A.1) Let G be a VC-class of subsets of X with VC

dimension V <∞. Let g and h be two given functions from Y ×D × X to R. Then

F = {f : f(y, d, x) = g(y, d, x)1{x ∈ G}+ h(y, d, x)1{x 6∈ G}, G ∈ G}

is a VC subgraph class of functions with VC dimension less than or equal to V .

Lemma A.2: (Symmetrization) (Van Der Vaart and Wellner (1996) Lemma 2.3.1) For a class of mea-

surable functions F and i.i.d random variables X1, . . . , XN ,

E
[

sup
f∈F

∣∣∣∣ 1

N

N∑
i=1

f(Xi)− E[f(Xi)]

∣∣∣∣] ≤ 2RN (F)

Lemma A.3: (Dudley’s entropy integral inequality) (Van Der Vaart and Wellner (1996) Corollary 2.2.8)

Let (Zf )f∈F be a separable process with sub-Gaussian increments. Then for some constant K, we have for

any f0

E[sup
f∈F
|Zf |] ≤ E[|Zf0 |] +K

∫ ∞
0

√
logN(t,F , h)dt

for some constant K.

Lemma A.4: (Van Der Vaart and Wellner (1996) Theorem 2.6.7) Suppose F is a VC subgraph class

with VC dimension at most V < ∞ and suppose F has a measurable envelope function F . For q ≥ 1 let P
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be a probability measure such that ‖F‖q,P > 0. Then

N(δ‖F‖Lq(P ),F , Lq(P )) ≤ KV (16e)V (1/δ)q(V−1)

for some constant K and 0 < δ < 1.

I now state and prove a useful result which establishes the relationship between the complexity of the

policy class Π and the complexity of the class of regret estimates. Define the following function classes:

F := {f : f(x) =

J∑
j=1

πj(x)Γj(x), π ∈ Π}

Πj := {πj : πj(x) = 1[π(x) = dj ], π ∈ Π}, ∀j ∈ {1, . . . , J}

The assumption that F is separable will be maintained.

Lemma A.5: Under Assumption 4.1.2,

N(δ,F , L2(PN )) ≤
J∏
j=1

N(ε,Πj , L2(PN ))

where ε = δ/(B
√
J) and B is the bound on v(d, x) implied by Assumption 4.1.2.

Proof. Let f ∈ F be given. From the discussion in Section 2, f can be written as

f(x) = max
k

max
m∈MP

(
vm(dk, x)−

J∑
j=1

πj(x)vm(dj , x)

)
(11)

for some π ∈ Π. For each treatment j, let Tj be an ε-cover of Πj and let π̃j be an element of Tj satisfying

EN [(πj(X)− π̃j(X))2]1/2 ≤ ε. Define the approximating function f̃ by

f̃(x) = max
k

max
m∈MP

vm(dk, x)−
J∑
j=1

π̃j(x)vm(dj , x) (12)

Finally, let k∗,m∗(x) be maximizers of (11) and let k̃, m̃(x) be maximizers of (12).

For each x we have by the optimality of k∗ and m∗

f(x)− f̃(x) = vm∗(dk∗ , x)− vm̃(dk̃, x) +

J∑
j=1

[
π̃j(x)vm∗(dj , x)− πj(x)vm̃(dj , x)

]

≥ vm̃(dk̃, x)− vm̃(dk̃, x) +

J∑
j=1

[
π̃j(x)vm̃(dj , x)− πj(x)vm̃(dj , x)

]
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=

J∑
j=1

[
(π̃j(x)− πj(x))vm̃(dj , x)

]

Likewise, optimality of m̃ and k̃ imply

f(x)− f̃(x) ≤
J∑
j=1

[
(π̃j(x)− πj(x))vm∗(dj , x)

]

Together, we have

|f(x)− f̃(x)| ≤ max

{∣∣∣∣ J∑
j=1

(π̃j(x)− πj(x))vm̃(dj , x)

∣∣∣∣, ∣∣∣∣ J∑
j=1

(π̃j(x)− πj(x))vm∗(dj , x)

∣∣∣∣}

≤ max

{
‖(π̃j(x)− πj(x))jj=1‖‖vm̃(·, x)‖, ‖(π̃j(x)− πj(x))jj=1‖‖vm∗(·, x)‖

}
≤ B

(∑
j

(πj(x)− π̃j(x))2

)1/2

where the second line is by the Cauchy-Schwartz inequality. Squaring and integrating over x,

EN,P [(f(X)− f̃(X))2] ≤ B2EN,P
[∑

j

(πj(X)− π̃j(X))2

]
≤ B2Jε2

≤ δ2

Taking the square root of both sides shows that ‖f − f̃‖L2(PN ) ≤ δ. Consider the set of all such functions

constructed this way,

T :=

{
f̃ : f̃(x) = max

k
max
m∈M

vm(dk, x)−
J∑
j=1

π̃j(x)vm(dj , x), π̃ = (π̃1, . . . , π̃J), π̃j ∈ Tj
}

we see that |T | =
∏
j |Tj |, and T is a δ-cover of F .

We can now prove the main results of the paper.

A.2 Proof of Lemma 4.5

Proof. To simplify notation, for now we consider P fixed and suppress dependence on P . By the definition

of F , we have

E
[

sup
π∈Π

∣∣∣∣R(π)− R̃N (π)

∣∣∣∣] = E
[

sup
f∈F

∣∣∣∣ 1

N

N∑
i=1

f(Xi)− E[f(Xi)]

∣∣∣∣]
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Hence, we can apply Lemma A.2 to obtain

E
[

sup
π∈Π

∣∣∣∣R(π)− R̃N (π)

∣∣∣∣] ≤ 2RN (F)

Now, define Zf = 1√
N

∑N
i=1 εif(Xi). The increments of (Zf )f∈F are given by 1√

N

∑N
i=1 εi(f(Xi) − g(Xi)).

Conditional on (Xi)
N
i=1, we can apply Hoeffding’s inequality (e.g. Van Der Vaart and Wellner (1996) Lemma

2.2.7) to establish that this is sub-Gaussian with parameter
(

1
N

∑N
i=1(f(Xi)− g(Xi))

2
)1/2

= ‖f −g‖L2(PN ).

We can then apply Lemma A.3 conditional on (Xi)
N
i=1 to obtain

1√
N

Eε[sup
f∈F
|Zf |] ≤

1√
N

Eε[|Zf0 |] +
K√
N

∫ ∞
0

√
logN(t,F , L2(PN ))dt

for some f0 ∈ F . Moreover, since f0 is bounded by 2B, |Zf0 | ≤ |
∑N
i=1 εi

2B√
N
|. Again by Hoeffding’s

inequality, this implies that Zf0 is sub-Gaussian with parameter K ′
(

1
N

∑N
i=1(2B)2

)1/2

= K ′2B which does

not depend on N . Basic properties of sub-Gaussian random variables (e.g. Vershynin (2018) Proposition

2.5.2) imply that Eε[|Zf0 |] ≤ K ′′ for some constant K ′′. Thus,

1√
N

Eε[sup
f∈F
|Zf |] ≤

1√
N

(
K ′′ +K

∫ ∞
0

√
logN(t,F , L2(PN ))dt

)
=

1√
N

(
K ′′ +K

∫ 4B

0

√
logN(t,F , L2(PN ))dt

)

where we have used the fact that since the diameter of F is 2B, the integrand is 0 for t > 4B. By Lemma

A.1, each class Πj is a VC subgraph class of functions with VC dimension at most v. Then applying Lemma

A.5 and a change of variables yields

1√
N

Eε[sup
f∈F
|Zf |] ≤

1√
N

K ′′ +K

∫ 4/
√
J

0

√∑
j

logN(t,Πj , L2(PN ))B
√
Jdt


Apply Lemma A.4 to each VC subgraph class of functions Πj , which have envelope 1, and allow K to

subsume other constants to obtain

1√
N

Eε[sup
f∈F
|Zf |] ≤

1√
N

(
K ′′ +K

∫ 4/
√
J

0

√
logK ′′′V (16e)V (1/t)2(V−1)dt

)
(13)

≤ 1√
N

(
K ′′ +K

√
V
)

(14)

≤ K
√
V

N
(15)

38



Finally, since RN (F) = E[ 1√
N
Eε[supf∈F |Zf |]], we obtain

E
[

sup
π∈Π

∣∣∣∣R(π)− R̃N (π)

∣∣∣∣] ≤ K
√
V

N

Note that the constant K does depend on B and J .

A.3 Proof of Lemma 4.6

Proof. To simplify notation, for now we consider P fixed and suppress dependence on P . For every 1 ≤

j, k ≤ J , let γjk : RJ0 7→ 2R
J

be the identified set for covariate-level regret, viewed as a set-valued mapping

from the first stage conditional mean response vector to subsets of RJ . That is, hold x fixed and define

γjk(w) = {bjk(x)′m − cjk(x) : Fm = w, Sm ≤ r}. For this proof, we view Γjk as a function of the

first stage conditional mean response m0 to consider how Γjk changes with perturbations to m0. Thus,

Γjk(m0(·, Xi)) = max{γjk(m0(·, Xi))}.

For any matrix A, let A† : null(A)⊥ 7→ range(A) denote the Moore-Penrose pseudoinverse operator,

where null(A) and range(A) denote the null space and range of A, respectively. For any w ∈ RJ0 ,

{m : Fm = w} = {m : m = F †w + y, y ∈ null(F )}

Let w̃ ∈ RJ0 be given. For any J , let BJ be the unit ball in RJ , BJ := {w ∈ RJ : ‖w‖ ≤ 1}. Since

w̃ ∈ w + ‖w − w̃‖BJ0 ,

{m : m = F †w̃ + y, y ∈ null(F )} ⊆ {m : m = F †z + y, y ∈ null(F ), z ∈ w + ‖w − w̃‖BJ0}.

Let ‖A‖ denote the operator norm of a matrix A. Since F †‖w − w̃‖BJ0 ⊆ ‖F †‖‖w − w̃‖BJ , we have

{m : m = F †z + y, y ∈ null(F ), z ∈ w + ‖w − w̃‖BJ0}

⊆ {m : m = F †w + y, y ∈ null(F )}+ ‖F †‖‖w̃ − w‖BJ .

This implies

{m : Fm = w̃} ∩ {m : Sm ≤ r} ⊆
(
{m : m = F †w + y, y ∈ null(F )}+ ‖F †‖‖w̃ − w‖BJ

)
∩ {m : Sm ≤ r}

39



and since γjk(w̃) consists of scalars of the form bjk(x)′m− cjk(x) for m in this set, we have

γjk(w̃) ⊆ γjk(w) + ‖bjk(x)‖‖F †‖‖w̃ − w‖B1

and likewise

γjk(w) ⊆ γjk(w̃) + ‖bjk(x)‖‖F †‖‖w̃ − w‖B1

Therefore, the correspondence γjk is Lipschitz with respect to the Hausdorff distance, with Lipschitz constant

supx‖bjk(x)‖‖F †‖ := κ < ∞ (Rockafellar and Wets 2009). Importantly, this implies |Γjk(m̂0(·, Xi) −

Γjk(m0(·, Xi))| ≤ κ‖m̂0(·, Xi) − m0(·, Xi)‖. While not essential to our analysis, we note that in our case

‖F †‖ = 1.

We can now prove the main claim of the lemma.

E
[

sup
π∈Π

∣∣∣∣R̃N (π)−RN (π)

∣∣∣∣]
= E

[
sup
π∈Π

∣∣∣∣ 1

N

N∑
i=1

J∑
j=1

πij(max
k

Γjk(m̂0(·, Xi))−max
k

Γjk(m0(·, Xi)))

∣∣∣∣]

≤ E
[

1

N

N∑
i=1

max
j,k

∣∣∣∣Γjk(m̂0(·, Xi))− Γjk(m0(·, Xi))

∣∣∣∣]

≤ E
[

1

N

N∑
i=1

κ‖m̂0(·, Xi)−m0(·, Xi)‖
]

Finally, we bound this uniformly in P by Assumption 4.2. We conclude that

sup
P∈PC

EP
[

sup
π∈Π

∣∣∣∣R̃N,P (π)−RN (π)

∣∣∣∣] ≤ O(ρ−1
N )

A.4 Proof of Theorem 4.4

Proof. Combining the bounds in Lemmas 4.5 and 4.6 establishes Theorem 4.4.
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B Extensions of theoretical results

B.1 Finite-sample bounds

In this section we consider strengthening the asymptotic result of Theorem 4.4 to hold for finite samples. We

replace Assumption 4.2 with the following assumption that the estimate m̂0 has finite-sample error bounds.

Assumption B.1: There exists a constant K > 0 and a sequence ρN → ∞ such that for all N ≥ 1, the

estimate m̂0 satisfies

1. supP∈P EP
[

1
N

∑N
i=1‖m̂0(·, Xi)−m0,P (·, Xi)‖

]
≤ Kρ−1

N

2. M̂ = {m : Sm(·, X) ≤ r, Fm(·, X) = m̂0(·, X)} is nonempty, almost surely, for all P ∈ P.

This assumption leads immediately to an extension of Lemma 4.6.

Corollary B.2: Under assumptions 4.1, 3.1, and B.1,

sup
P∈PC

EP
[

sup
π∈Π

∣∣∣∣R̃N,P (π)−RN (π)

∣∣∣∣] ≤ Kρ−1
N .

Proof. By the exact same argument as in the proof of Lemma 4.6, we have that for any P ∈ P,

EP
[

sup
π∈Π

∣∣∣∣R̃N,P (π)−RN (π)

∣∣∣∣] ≤ EP
[

1

N

N∑
i=1

κ‖m̂0(·, Xi)−m0,P (·, Xi)‖
]

and the conclusion follows by Assumption B.1.

Combining the bounds of Lemma 4.5 and Corollary B.2, we obtain the following simple extension of

Theorem 4.4.

Corollary B.3: Let PC be a set of distributions for which (1) Assumptions 4.1 holds with constant C and

(2) Assumption B.1 holds. Under Assumptions 3.1 and 4.3,

sup
P∈PC

(
EP [RP (π̂)]−RP (π∗P )

)
≤ K(N−1/2 ∨ ρ−1

N )

for some constant K depending only on C and J .

We now show that the finite-sample bound in Assumption B.1 is satisfied with ρN = N1/2 when covariates

are discrete, and therefore Corollary B.3 is satisfied with ρN = N1/2.

Proposition B.4: Let P be a set of distributions for which
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1. |X | = M <∞ and Yi is binary

2. P (Xi = x,Di = d) ≥ δ > 0 for all x ∈ X and d ∈ D0.

Then there exists a sample size N̄ such that for all N ≥ N̄ ,

sup
P∈P

EP
[

1

N

N∑
i=1

‖m̂0(·, Xi)−m0,P (·, Xi)‖
]
≤
(
J0 × |X |

δ

)1/2

N−1/2.

Proof. Define Zi = (Di, Xi), and let L = J0×M denote the number of possible combinations of Di and Xi.

For any P ∈ P, let p` = P[Zi = `]. By Chernoff’s inequality (Vershynin 2018 Theorem 2.3.1),

P

(
N∑
i=1

1[Zi = `] ≤ Np`
2

)
≤ exp

(
(ln(2)− 1)

Np`
2

)
. (16)

For any ` ∈ [L], let m` = E[Yi | Zi = `]. Conditional on
∑N
i=1 1[Zi = `], we have

E

( 1∑N
i=1 1[Zi = `]

N∑
i=1

yi1[Zi = `]−m`

)2
 =

m`(1−m`)∑N
i=1 1[Zi = `]

≤ 1

4
∑N
i=1 1[Zi = `]

for any ` ∈ [L], since m` ∈ [0, 1].

Since p` ≥ δ by assumption, we have that conditional on
∑N
i=1 1[Zi = `] > Np`

2 ,

E
[
(m̂` −m`)

2
]
≤ 1

2Nδ
(17)

and therefore

E
[
(m̂` −m`)

2
]
≤ E

[
(m̂` −m`)

2 |
N∑
i=1

1[Zi = `] >
Np`

2

]
P

(
N∑
i=1

1[Zi = `] >
Np`

2

)

+ E

[
(m̂` −m`)

2 |
N∑
i=1

1[Zi = `] ≤ Np`
2

]
P

(
N∑
i=1

1[Zi = `] ≤ Np`
2

)

≤ 1

2Nδ
+ exp

(
(ln(2)− 1)

Nδ

2

)

where in the last lines we have used the bounds (16) and (17), and the fact that (m̂` −m`)
2 ≤ 1. There

exists N̄ such that for all N ≥ N̄ , the second term is less than 1
2Nδ and therefore

E
[
(m̂` −m`)

2
]
≤ 1

Nδ
.
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By Jensen’s inequality, the overall error is bounded by

E

[
1

N

N∑
i=1

‖m̂0(·, Xi)−m0,P (·, Xi)‖

]
≤

(
L∑
`=1

E
[
(m̂` −m`)

2
])1/2

and therefore

E

[
1

N

N∑
i=1

‖m̂0(·, Xi)−m0,P (·, Xi)‖

]
≤
(
L

Nδ

)1/2

for all N ≥ N̄ . Since L and δ do not depend on P , this bound is uniform over P.

B.2 Estimation of the parameters of the utility function

In this section we relax the assumption that b(d, x) and c(d, x) are known. We instead assume that estimates

of b(d, x) and c(d, x) are available. This assumption is stronger than the assumption that m̂0(d, x) converges

to m0(d, x), because it implies a consistent estimate of b(d, x) and c(d, x) is available for new treatments as

well as existing ones. This assumption may be satisfied if b(d, x) = b(x) and c(d, x) = c(x) are known to

not depend on d. For example, b(x) may represent the value of a good to a household with characteristics

x, and c(x) may represent the cost of delivering the good to the household. Alternatively, it is also possible

that b(d, x) and c(d, x) depend on d in a known way, such as price minus marginal cost, b(d, x) = d− b(x).

Redefine the regret score analogously to (5), using the estimated utility function.

Γ̂jk(Xi) = max
m∈RJ

b̂jk(Xi)
′m−ĉjk(Xi)

s.t. Sm ≤ r

Fm = m̂0(Xi)

We assume that the estimated parameters converge to the true parameters at the same rate as the

estimated mean of the treatment effect. We also assume that mean conditional response is bounded, as it is

in Section 5.

Assumption B.5: For some sequence ρN →∞ and some class of distributions P,

1. lim supN→∞ supP∈P ρNEP
[

1
N

∑N
i=1‖m̂0(·, Xi)−m0,P (·, Xi)‖

]
≤ ∞

2. lim supN→∞ supP∈P ρNEP
[

1
N

∑N
i=1‖b̂(·, Xi)− b(·, Xi)‖

]
≤ ∞

3. lim supN→∞ supP∈P ρNEP
[

1
N

∑N
i=1‖ĉ(·, Xi)− c(·, Xi)‖

]
≤ ∞
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4. M̂ = {m : Sm(·, X) ≤ r, Fm(·, X) = m̂0(·, X)} is nonempty, almost surely, for all P ∈ P.

5. There exists a bounded set M⊂ RJ such that M̂ ⊂M almost surely, for all P ∈ P.

We show that under this assumption, the conclusions of Lemma 4.6 and Theorem 4.4 hold.

Proposition B.6: Under Assumptions 3.1, 4.3, and B.5,

sup
P∈P

EP
[
RP (π̂)−RP (π∗P )

]
≤ O(N−1/2 ∨ ρ−1

N )

Proof. We write the difference between the estimated and true regret scores as

∣∣∣∣Γ̂jk(Xi)− Γjk(Xi)

∣∣∣∣ =

∣∣∣∣ max
m∈M̂

b̂jk(Xi)
′m− ĉjk(Xi)−

(
max
m∈M

bjk(Xi)
′m− cjk(Xi)

) ∣∣∣∣
≤
∣∣∣∣ max
m∈M̂

b̂jk(Xi)
′m− max

m∈M̂
bjk(Xi)

′m

∣∣∣∣
+

∣∣∣∣ max
m∈M̂

bjk(Xi)
′m− max

m∈M
bjk(Xi)

′m

∣∣∣∣
+

∣∣∣∣ĉjk(Xi)− cjk(Xi)

∣∣∣∣
The first term is bounded by

∣∣∣∣ max
m∈M̂

(b̂jk(Xi)− bjk(Xi))
′m

∣∣∣∣ ≤ ∣∣∣∣ max
m∈M

(b̂jk(Xi)− bjk(Xi))
′m

∣∣∣∣
≤ ‖b̂jk(Xi)− bjk(Xi)‖M

≤ 2‖b̂(·, Xi)− b(·, Xi)‖M

where M = maxm∈M‖m‖. The second term is bounded by

κ‖m̂0(Xi)−m0,P (Xi)‖

by Lemma 4.6. The third term is bounded by

|cj(Xi)− ĉj(Xi)|+ |ck(Xi)− ĉk(Xi)| ≤ 2‖ĉ(·, Xi)− c(·, Xi)‖

and therefore all three terms are O(ρ−1
N ) uniformly in P ∈ P.
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Together, we have that

sup
P∈P

EP
[

sup
π∈Π

∣∣∣∣R̃N (π)−RN (π)

∣∣∣∣] ≤ sup
P∈P

EP
[

1

N

N∑
i=1

max
j,k

∣∣∣∣Γ̂jk(Xi)− Γjk(Xi)

∣∣∣∣]
≤ O(ρ−1

N )

Combining this with Lemma 4.5 yields the conclusion.

C Simulation study

This section presents the results of a simulation study that examines how the choice of estimator m̂0 affects

the performance of the resulting estimated policy.

We consider a firm choosing a price to maximize profit. The firm faces logit demand given by

P (yi = 1|zi) =
exp(z′iβ)

1 + exp(z′iβ)

and constant marginal cost of 1. Here zi = (1, xi, pi, xipi) and xi ∼ U [0, 1] is a continuous covariate.

The price pi is randomly assigned from D0 = {1, 3, 5} independently of xi. The set of possible prices is

D = {1, 2, 3, 4, 5}. The conditional mean response is assumed to be decreasing in price, holding xi fixed.

For the simulation, we set β = (2.25, 1,−0.25,−1). The purchase probabilities and profits are plotted in

Figure 8.

Figure 8: Purchase probabilities and profits

A policy is defined by a scalar β and a vector of cutoffs {κj}4j=1 with κj−1 ≤ κj for all j. Unit i is

assigned to price j if κj−1 < βxi ≤ κj (letting κ0 = −∞ and κ5 = ∞). Only the sign of β matters, since

the cutoffs must be increasing.

We consider N ∈ {100, 250, 500, 750, 1000} observations. We perform 200 Monte Carlo simulations for

each value of N . For each simulation, we estimate two models for the response function: a logit model
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in xi separately for each price, and a Lasso model with a logit link function on a dictionary of Chebyshev

polynomials in xi, separately for each price. The regularization parameter is selected by cross-validation.

The maximum regret (estimated on holdout data) is plotted in Figure 9.

Figure 9: Maximum regret

As predicted by Theorem 4.4, the Lasso estimator achieves higher regret than the correctly specified

parametric model.

D Computational details

D.1 Shape constraints

Mean takeup as a function of price, holding covariates fixed, is bounded between 0 and 1. It is assumed to

be downward sloping and the subsidy is assumed to exhibit decreasing returns to scale, so that takeup is

convex. These constraints can be expressed as Sm̃(., X) ≤ r where

S1 =



−1
d2−d1

1
d2−d1 0 . . .

0 −1
d3−d2

1
d3−d2 0 . . .

...

. . . 0 −1
dJ−dJ−1

1
dJ−dJ−1


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S2 =



−1
d2−d1

1
d2−d1 + 1

d3−d2
−1

d3−d2 0 . . .

0 −1
d3−d2

1
d3−d2 + 1

d4−d3
−1

d4−d3 0 . . .

...

. . . 0 −1
dJ−1−dJ−2

1
dJ−1−dJ−2

+ 1
dJ−dJ−1

−1
dJ−dJ−1



S =



−I

I

S1

S2


r =



0J

−1J

0J−1

0J−2


D.2 Dual representation of maximum regret

For each individual i, the maximum regret is obtained by

Γ̂j(Xi) = max
k,m

bjk(Xi)
′m− cjk(Xi) s.t. Sm ≤ r, Fm = m̂(., Xi)

For now, suppress the dependence on Xi and j. Let λ be the vector of Lagrange dual variables associated

with the inequality constraint, and let η be the vector of Lagrange dual variables associated with the equality

constraint. We can rewrite the linear program as

min
µ
µ s.t. µ+ ck ≥ max

m
{b′km s.t. Sm ≤ r, Fm = m̂0} ∀k

min
µ
µ s.t. µ+ ck ≥ min

λ,η
{λ′r + η′m̂0 s.t. λ′S + η′F ≥ bk, λ ≥ 0}∀k

min
µ,λ,η

µ s.t. µ+ ck ≥ λ′r + η′m̂0, λ′S + η′F ≥ bk, λ ≥ 0 ∀k

Thus, computing each Γ̂j(Xi) is a single linear program. Since the programs are independent across i, they

can be solved simultaneously by summing the objective across individuals.

Since the dual formulation above is expressed as a minimization problem, it can be solved jointly with

the minimization over π in (4). Alternatively, since there are finitely many Γ̂j(Xi), we can solve these linear

programs before performing the policy minimization, and plug the values into (4). In the application of

Section 5, solving the problem jointly did not decrease computation time.

D.3 MILP Formulation of MMR Problem

Consider the set of policies given by (10) in the problem (4). To express this as a mixed integer-linear

program, introduce the binary variables gij for i = 1, . . . , N and j = 1, . . . , J − 1 to indicate whether X ′iβ is
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above cutoff j. For notational convenience, set gi0 = 1 and giJ = 0.

We introduce constraints to ensure that gij is one if and only if X ′iβ is above cutoff j using the “big-M”

method. These constraints are

X ′iβ − cj ≤Mgij

X ′iβ − cj ≥ −M(1− gij) + ε

where M is a sufficiently large constant and ε is a sufficiently small numerical error tolerance. The first

constraint ensures that gij = 1 if X ′iβ > cj , and the second constraint ensures that gij = 0 if X ′iβ ≤ cj + ε.

The constant M must be chosen large enough to ensure that |X ′iβ − cj | ≤M for all i and j. The tolerance

ε is introduced to imitate a strict inequality constraint, which is not possible to impose exactly in a mixed

integer-linear program. Otherwise, a solution of β = 0, cj = 0 for all j would permit gij to be either 0 or 1

for all i and j. For any optimal policy (β, c), the policy (tβ, tc) is also optimal for t > 0. Thus, without loss

of generality, we may set M = 1.

This leads to the following mixed integer-linear program:

min
g,β,c

N∑
i=1

J∑
j=1

(gij − gi,j−1)Γ̂j(Xi)

s.t. c1 ≤ c2 ≤ · · · ≤ cJ−1

gij ≥ X ′iβ − cj + ε, i = 1, . . . , N, j = 1, . . . , J − 1

gij ≤ 1 +X ′iβ − cj , i = 1, . . . , N, j = 1, . . . , J − 1

β1 ≥ 0

which we can solve using a standard mixed integer-linear programming solver.

E Robustness

E.1 Maximin welfare with Lipschitz constraint

I first illustrate the effect of shape restrictions on the maximin welfare policy. I give an example of shape

restrictions that ensure the maximin welfare policy assigns a new treatment to the population. The maximin

welfare policy without covariates is given by the price that maximizes the lower bound on welfare in Figure 2.

This policy assigns a price of 15 thousand shillings to the population. Although the maximin welfare policy

restricts to the original set of treatments, this is not true in general and depends on the utility function and
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Figure 10: Bounds on takeup and utility at each price with Lipschitz constraint

The maximal and minimal possible expected takeup at each price, and the corresponding bounds on expected
utility generated by these bounds on takeup.

the shape restrictions imposed.

To illustrate this, I give an example in which the maximin welfare policy assigns a new treatment to the

population. Specifically, in the example of Section 5, impose in addition that takeup is Lipschitz continuous,

with a Lipschitz constant of 0.06. The resulting bounds on takeup and welfare are plotted in Figure 10.

From Figure 10, we see that the maximin welfare policy assigns a price of 7.5 thousand shillings to the

population.

E.2 Robustness to utility parameters and treatment set

In these section I present the optimal policy under different specifications of D and α. I consider three

specifications of D constructed from equally spaced prices between 0 and 35 thousand shillings, where

dj+1 − dj = ∆ for ∆ ∈ {5, 2.5, 1}. I consider three values of α ∈ {25, 35, 45}. The results are plotted in

Figures 11-18, except for ∆ = 2.5 and α = 25, which is shown in Section 5.
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Figure 11: ∆ = 5, α = 25

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicate which covariate
values are assigned to each treatment.

Figure 12: ∆ = 5, α = 35

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicate which covariate
values are assigned to each treatment.
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Figure 13: ∆ = 5, α = 45

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicate which covariate
values are assigned to each treatment.

Figure 14: ∆ = 2.5, α = 25

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicate which covariate
values are assigned to each treatment.
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Figure 15: ∆ = 2.5, α = 45

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicate which covariate
values are assigned to each treatment.

Figure 16: ∆ = 1, α = 25

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicate which covariate
values are assigned to each treatment.
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Figure 17: ∆ = 1, α = 35

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicate which covariate
values are assigned to each treatment.

Figure 18: ∆ = 1, α = 45

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicate which covariate
values are assigned to each treatment.
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